• 日本語
    • English (英語)
Avinton JapanAvinton JapanAvinton JapanAvinton Japan
  • サービス
    • Avinton Data Platform
    • エッジAIカメラ
      • 自動車ナンバープレート自動認識システム
    • プライベートクラウド
    • AIサービス開発
    • AIカメラ/画像解析無料体験版
    • 見てわかる観光庁オープンデータ
  • 最新情報
    • ニュースリリース&イベント情報
    • 技術ブログ&インタビュー
  • アカデミー
    • Avintonアカデミー
    • Academy on Campus
    • Academy with Platform
  • 採用情報
    • Avintonジャパン 採用ページ
    • 求人一覧
    • よくある質問
    • 新卒採用
  • 企業情報
    • 会社概要
    • 代表からご挨拶
    • SDGsへの貢献
  • お問い合わせ

Python2.7とOpenCVのインストール

  • ルーティング
  • データベースの命名規則
  • 三目並べ – 2.〇×を交互にゲーム盤に入るようにしよう
  • 三目並べ – 3.勝敗がつくようにしよう
  • クリーンコード(Clean Code)
  • 三目並べ – 4.「スタート」「リセット」ボタンをつけよう
  • 三目並べ – 5.先攻後攻を決めて、コンピュータ対戦にしよう(前編)
  • インフラストラクチャー(サーバー、コンポーネント、RAID)
  • 機械学習入門者向け Support Vector Machine (SVM) に触れてみる
  • YOLOv8を用いた物体検出
  • 正規表現とパイプ
  • 機械学習エンジニアに必要なスキル
  • 軽量版Kubernetesディストリビューション – k0s クラスターの構築
  • ファイル操作コマンド
  • グループとユーザー
  • 困った時に使うコマンド
  • 一般グループのユーザーとグループ
  • プライバシーポリシー
  • 三目並べ – 6.先攻後攻を決めて、コンピュータ対戦にしよう(後編)
  • フロントエンド開発のための環境構築
  • ファイル検索コマンド
  • 質問
  • 仮想化環境のディスク容量を拡張する
  • ユーザー権限とアクセス権
  • データ分析基礎 – Part1
  • 三目並べ – 0.導入
  • テキスト処理
  • データベースへのデータロード
  • 機械学習概要1
  • 機械学習入門者向け Naive Bayes(単純ベイズ)アルゴリズムに触れてみる
  • ファイル管理
  • SSHを使用してホストOSからゲストOSに接続する
  • 機械学習入門者向け ChainerRLでブロック崩しの学習
  • 機械学習入門者向け ランダムフォレストによる Kaggle Titanic生存者予測
  • 機械学習概要2
  • データ分析基礎 – Part 2
  • 機械学習入門者向け 分類と回帰の違いをプログラムを書いて学ぼう
  • フロントエンドのWeb開発について
  • ダイナミックルーティング
  • 三目並べ – 1.ゲーム盤を作ろう
  • 【Python入門】Python Numpy チュートリアル
  • Amazon EC2 インスタンスの初期設定をしよう
  • AmazonEC2とVPCでネットワークとサーバーを構築しよう
  • Apache NiFi Exercise
  • Apache NiFi データパイプライン基礎
  • Apache NiFiの環境設定
  • Apache Spark 基礎
  • Apache SparkとApache Zeppelinの概要と環境構築
  • Apache Superset maptoolの使い方
  • Apache Superset 基礎
  • Apache Superset 概要と環境構築
  • Apache Zeppelin 基本機能
  • APIのデモンストレーション
  • Avinton Academy コンテンツガイド
  • AWS CLIをインストールしてコマンド操作しよう
  • AWS CLIを使ってEC2のファイルをS3へアップロードしよう
  • AWS Route 53を使って独自ドメインのWebページを表示させてみよう
  • AWSアカウントの作成と必ずやるべきセキュリティ対策
  • AWSのEC2インスタンスでWordPressブログを公開してみよう
  • AWS入門者向け 初心者が最初に理解すべきEC2とVPCの基本的な用語解説
  • CCNA
  • Certbotを使ってSSL証明書を発行し、HTTP通信を暗号化しよう
  • CISCO 1800ルータセットアップ
  • CSV import & export – Node.js, mySQL – 1
  • CSV import & export – Node.js, mySQL – 2
  • Docker Compose(Nginx + Flask + MySQL)演習
  • Docker Engineのubuntu上へのinstall
  • Docker 概要とセットアップ
  • Docker, Kubernetesの学び方について
  • Dockerコンテナイメージの最適化/ベストプラクティス
  • DockerとApacheを使ってWebサーバーを構築しよう
  • EC2からS3へ自動でぽいぽいアップロードするスクリプトの作成
  • ESP32-CAMのサンプルアプリケーションを実行する
  • 01 – Sparkfun Inventor’s Kit の準備
  • 02 – Sparkfun Inventor’s KitでLチカ
  • 03 ポテンショメータでLEDの点滅間隔をアナログ入力する
  • 04 フォトレジスタで明るさに反応するシステムをつくる
  • 05 LCDに文字列を表示する
  • 06 – BME280とLCDを組み合わせて温度計をつくる
  • ESP32とArduino IDE/PlatfromIOでHello Worldアプリケーションの実行
  • ESP32と超音波センサー HC-SR04 で物体の距離を計測する
  • ESXi – Switchの追加とVLAN
  • ESXi – VyOS
  • ESXi – 小規模ネットワーク 構築
  • Gitとは
  • VS CodeでGitHub Copilotを設定する
  • VSCode リモート開発環境
  • GNS3のセットアップ
  • Kubernetesクラスター上へのOpenVINOモデルサーバーを使用したサンプルアプリケーションのデプロイ
  • Linuxとは
  • NAT
  • NodeJSでWebアプリケーション開発 – React編
  • NodeJSでWebアプリケーション開発 – React編
  • NodeJSでWebアプリケーション開発 – React編
  • NodeJSでWebアプリケーション開発 – Socket.IO編
  • NVIDIA Cumulus VX + GNS3でBGPネットワークのシミュレーション
  • OpenCVのテストプログラム
  • PacketTracerのセットアップ
  • Pandasによる構造化データ分析
  • PCからルータ、スイッチへのSSH接続設定
  • PostGIS exercise
  • PostgreSQL – Python – Apache – Bootstrap
  • MySQLとMySQL Workbench のセットアップ
  • PostgreSQL Setup
  • PostgreSQL – インデックスを利用したパフォーマンス改善方法
  • PostgreSQL – パーティショニングを利用したパフォーマンス改善方法
  • PostgreSQLによるデータ分析
  • postgreSQLへのshp fileのimport
  • Python2.7とOpenCVのインストール
  • Python3.8 と OpenCV のインストール (Ubuntu20.04LTS)
  • Pythonでデータベースを操作する
  • Pythonで画像を分類するプログラムを作成する
  • Pythonによるマルチスレッドプログラミング実践
  • Raspberry Pi 4B のセットアップ
  • Raspberry PiとBME280を使用して温度と湿度、気圧を読み取る
  • REDIS
  • Redux基礎 – 主要な概念と用語
  • Ruby on Rails を MySQLでセットアップ
  • Ruby on Railsによる簡単なウェブアプリケーション
  • SampleアプリケーションのKubernetes上へのデプロイ
  • Scala 基礎
  • scikit-learnとは
  • Spark SQL エクササイズ
  • SparkMLによるKaggle Titanic生存者予測
  • KNIME, AutoMLライブラリによる住宅価格予測
  • SparkMLによる住宅価格予測
  • SQL 便利な関数
  • Ubuntuの基本設定
  • uhubctlでUSBデバイスのオンオフをコントロール
  • Terraform入門 2 – Terraformのstate管理
  • Terraform入門 1 – TerraformでAWS上にEC2インスタンスを作成する
  • Virtualisation and Container (仮想化とコンテナ) – Ansible, Docker and Kubernetes
  • viエディタ
  • VLAN
  • VMware ESXi サーバー構築
  • Webアプリ開発に欠かせないGoogle Chrome DevToolsの基本
  • Windows Server 2012 R2 Hyper-V
  • Object Detection with YOLOv8
Home Avintonアカデミー Python2.7とOpenCVのインストール
Python Logo
OpenCV

Python2.7とOpenCVのセットアップ

Python3.xを用いたセットアップはこちらです。

以下のチュートリアルではUbuntu16.04が使用されています。

 

Python Install

ホームディレクトリに移動しましょう。

1
cd ~

最近インストールしたパッケージのアップグレードを行います。(時間がかかるかもしれません。)

1
2
sudo apt-get update
sudo apt-get upgrade

ツールのインストール:

1
2
3
4
sudo apt-get install build-essential
sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
sudo apt-get install python-dev python-numpy
sudo apt-get install -y unzip wget

今回は映像処理も行うため、以下のようなパッケージもインストールします。

1
sudo apt-get install libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev

Install Image -> GUI handler

1
sudo apt-get install libgtk2.0-dev

Video Processing:

1
sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev

OpneCVを最適化するためのライブラリもインストールします。

1
sudo apt-get install libatlas-base-dev gfortran

PIPというPythonのパッケージマネージャーもインストールします。

1
2
wget https://bootstrap.pypa.io/get-pip.py
sudo -H python get-pip.py

Python 2.7のインストール

1
sudo -H apt-get install python2.7-dev

画像描写を行うためのPythonのライブラリーである”numpy”をインストールします。

1
sudo pip install numpy

Copy OpenCV Repo

Get OpenCV 3.3 build from GitHub

1
2
3
4
5
cd ~
wget https://github.com/opencv/opencv/archive/3.3.0.zip
unzip 3.3.0.zip
mv opencv-3.3.0/ opencv
cd opencv

ビルドを行います。

1
2
3
4
cd ~/opencv
$ mkdir build
$ cd build
$ sudo cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..

OpenCVをコンパイルします。

1
make -j7

もし、この作業でディスク容量が不足した場合、VirtualBox容量拡大ページ確認してください。

OpneCVをインストールします。

1
2
sudo make install
sudo ldconfig

テストを行います。

1
2
3
python
import cv2
cv2.__version__

OpenCVが正しくインストールされていれば、インストールしたOpenCVのバージョンが返されます (3.3.0)。

Pythonのインタープリタからログアウトしてください。

1
exit()

 

~

Python3.xとOpenCVのセットアップ

以下のチュートリアルではUbuntu16.04が使用されています。

Python Install

ホームディレクトリに移動しましょう。

1
cd ~

最近インストールしたパッケージのアップグレードを行います。(時間がかかるかもしれません。)

1
2
sudo apt-get update
sudo apt-get upgrade

OpenCVと依存関係にあるライブラリのインストール

1
2
3
4
5
sudo apt-get install build-essential cmake git pkg-config
sudo apt-get install libjpeg8-dev libtiff4-dev libjasper-dev libpng12-dev
sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
sudo apt-get install libgtk2.0-dev
sudo apt-get install libatlas-base-dev gfortran

Pythonのセットアップ

python3用のパッケージ管理システムをインストールします。

1
sudo apt-get install python3-pip

Python3のヘッダーとライブラリをインストールします。

1
sudo apt-get install python3.4-dev

NumPyをインストールします。

1
pip3 install numpy

OpenCVのダウンロード (公式)

wgetコマンドを使ってOpenCVをダウンロードします(version 3.4.3)。

1
wget -O opencv.zip https://github.com/opencv/opencv/archive/3.4.3.zip

続いてSIFT, SURFなどのアルゴリズムが入ったopencv_contribモジュールをダウンロードします。

1
wget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/3.4.3.zip

OpenCVの設定とコンパイル

OpenCVのビルドを行います。

1
2
3
4
5
6
7
8
9
10
cd ~/opencv-3.4.3/
mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=RELEASE \
    -D CMAKE_INSTALL_PREFIX=/usr/local \
    -D INSTALL_PYTHON_EXAMPLES=ON \
    -D INSTALL_C_EXAMPLES=OFF \
    -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib-3.4.3/modules \
    -D PYTHON_EXECUTABLE=~/.virtualenvs/cv/bin/python \
    -D BUILD_EXAMPLES=ON ..

OpenCVのコンパイルを行います。

1
make -j4

コンパイルに成功したら、OpenCVをインストールします。

1
2
sudo make install
sudo ldconfig

インストールされたOpenCVのバージョンを確認します。

1
pkg-config --modversion opencv

テストを行います。

1
2
3
python
import cv2
cv2.__version__

OpenCVが正しくインストールされていれば、インストールしたOpenCVのバージョンが返されます (3.3.0)。

Pythonのインタープリタからログアウトしてください。

1
exit()

前へ
次へ

採用情報

採用情報

Categories

  • 相互学習
  • 採用
  • 社員インタビュー
  • 学習&資格取得
  • 技術解説
  • イベント告知
  • 学内説明会&講義
  • 産学連携
  • 就職活動
  • イベントレポート
  • その他
  • 技術ブログ&インタビュー
  • mainpage
  • New Graduates Interviews
  • 中途エンジニア
  • カテゴリーなし
  • ニュースリリース&イベント

Avinton SDGs

SDGsへの貢献

Search

タグ

AIカメラ AI時代の経営 AvintonAcademy on Campus AWS Big Data ccna Docker DQN FINOLAB Git ITコンサル James Cauchi LPIC-2 PM&PMO Raspberry Pi SSD イベントレポート インターン エッジコンピューティング エリクソン エンジニア クラウトネイティブ コンテナ技術 ディープラーニング データベース データ生成 ファンダフルリレーマラソン モブワーク リスキリング リードエンジニア 中瀬幸子 企業説明会 医療 大学&専門学校 就職活動 帰社日 強化学習、機械学習 技術ブログ 掲載告知 未経験 深層学習 田中 研之輔 社員紹介 第一級陸上特殊無線技士 観光データ
© 2023 Avinton | All Rights Reserved | プライバシーポリシー
  • サービス
    • Avinton Data Platform
    • エッジAIカメラ
      • 自動車ナンバープレート自動認識システム
    • プライベートクラウド
    • AIサービス開発
    • AIカメラ/画像解析無料体験版
    • 見てわかる観光庁オープンデータ
  • 最新情報
    • ニュースリリース&イベント情報
    • 技術ブログ&インタビュー
  • アカデミー
    • Avintonアカデミー
    • Academy on Campus
    • Academy with Platform
  • 採用情報
    • Avintonジャパン 採用ページ
    • 求人一覧
    • よくある質問
    • 新卒採用
  • 企業情報
    • 会社概要
    • 代表からご挨拶
    • SDGsへの貢献
  • お問い合わせ
  • 日本語
    • English (英語)
Avinton Japan